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Abstract

1,3-Dipolar cycloaddition of polymer-supported azomethine imines with dimethyl acetylenedicarboxylate
(DMAD) gave pyrazole derivatives in good yields. The azomethine imines were generated from polymer-supported

-silylnitrosoamides by a 1,4-silatropic shift. The feature of this reaction is that no cleavage operations are required
after the cycloaddition. © 2000 Elsevier Science Ltd. All rights reserved.

Solid-phase organic synthesis (SPOB)currently an important technique, because of the progress
in combinatorial chemistry and high-throughput screerit@ne of the most useful methods for the
synthesis of diverse heterocyclic compounds is 1,3-dipolar cycloadditimal, in the past few years, a
considerable number of solid-phase syntheses of heterocycles using 1,3-dipolar cycloaddition have been
reported*

In the course of our studies of the generation of 1,3-dipoles fresilylimines? -silylamides® or -
silylnitrosamine$ which involve an intramolecular silatropic shift, we found that a similar cycloaddition
can be performed by means ofsilylnitrosoamides and dipolarophiles to giMeunsubstituted pyrazoles
in excellent yields (Scheme 1)Thus, azomethine imin® which is generated via a 1,4-silatropic shift of
the silyl group onto the oxygen of the nitroso group, undergoes a 1,3-dipolar cycloaddition with dimethyl
acetylenedicarboxylate (DMAD) to give the five-membered ring ad8ulttis interesting that the acyl
group is spontaneously eliminated as a silylester fBemdN-unsubstituted pyrazokeis obtained after
aromatization. If a polymer is attached to the acyl grouft,dhis would greatly enhance the versatility
of the reaction. Namely, the target pyrazole could be separated from the polymer-supported silylester by
simply filtering the reaction mixture. In this paper, we describe such an approach, namely, the traceless
synthesis of pyrazole derivatives from polymer-supportesilylnitrosoamides.
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Scheme 1.

We initially examined the preparation of a polymer-supportedilylnitrosoamide8 according to
Scheme 2. The -silylamine 6 was coupled with carboxypolystyrerte in the presence ofN,N’-
diisopropylcarbodiimide (DIC) in dichloromethane to give a polymer-supportetmethylsilylamide?.
Treatment of resiii with dinitrogen tetroxide in carbon tetrachloride resulted in the complete conversion
into 8, which could be verified by the change in IR spectra of the carbonyl function. Cycloadditions of the
generate® with DMAD (2 equiv.) were performed at 80°C for a period of 1 h. Although both redias (
and8b), which were prepared from trimethylsilylmethylamir@s) and -(trimethylsilyl)benzylamine
(6b), afforded the corresponding pyrazoleka@nd 4b), the yields were low. Increasing the reaction
time or elevating the temperature failed to improve the yields. One reason for the poor efficiency of the
cycloaddition might be due to the short distance between the polymer-support and the azomethine imine
unit. Another might be that a rate of the side reaction caused by the intramolecular acyl shift onto the
nitroso group (Huisgen—White rearrangenf¢mtas much greater than that of the desired cycloaddition.
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Scheme 2.

A preliminary solution-phase experiment revealed that the cycloadditionteafbutyl -
silylnitrosocarbamate with DMAD does not afford a side reaction product. This may be because
of the higher electron density on the carbon of the carbamate than that of the nitrosoamide. With this fact
in mind, we next designed a polymer-supportegilylnitrosocarbamaté&3 which contains an extended
linker (Scheme 3). Of the methods available for the synthesis of polymer-supported carcamates,
selected and synthesized the imidazole-modified régjnreported by Hernandez and Hoddésas
an alkoxycarbonylating reagent. Activation b1 with methyl trifluoromethanesulfonate (MeOPH,
followed by treatment with -silylamine 6 gave a polymer-supported carbama® Nitrosation of
12 was performed with dinitrogen tetroxide to affoi@. The progress of the reaction was monitored
directly by FT-IR and'H MAS (magic angle spinning) NMR without cleavage of the resins (Fig.
1la,b).
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Fig. 1. (a) FT-IR spectra of resid, 123 and13g (b) 600 MHz'H MAS NMR spectra of resinl, 125 and13a(in the Nano
NMR probes)

The prepared polymer-supportedsilylnitrosocarbamaté 3 was reacted with DMAD in toluene
under several sets of conditions (Table 1). After the reaction, the polymer was filtered off and the filtrate
was purified by silica gel chromatographyThe yield was determined, based on the initial loading of the
Merrifield resin. The reaction rate usii@ was slow compared to that using re$iand, in the case of
an extended reaction time, the anticipatédnsubstituted pyrazole reacted with an excess of DMAD to
give Michael adduct$4 and15.12 When13awas reacted at 80°C for 2 h, pyrazdiéawas obtained in
26% vyield (entry 1). Furthermore, an increase of the reaction time was effective in increasing the yield of
14aand the optimum yield (70%) was achieved after 48 h (entry 3). Elevation of temperature to 110°C
did not result in an improvement, though the yields were almost the same as those of the reactions at
80°C (entries 4 and 5). On the other hand, cycloaddition of phenyl-substitutglginitrosocarbamate
13b was performed using the optimized conditions to give two types of Michael adtidbtand 15b
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Table 1
Cycloaddition of resiri3 with DMAD (4 equiv.)

entry o-silylnitrosocarbamate R T (°C) time (h) products (yield, %) “
1 13a H 80 2 14a (26)
2 13a H 80 24 14a (59)
3 13a H 80 48 14a (70)
4 13a H 110 24 14a (50)
5 13a H 110 48 14a (64)
6 13b Ph 80 48 14b (26) + 15b (21)
7 13¢ 4-methoxyphenyl 80 48 14c¢ (12) + 15¢(11)
8 13d 4-fluorophenyl 80 48 14d (21) + 15d (21)

“Isolated yield. The yield was determined based on the initial loading of Merrifield resin .

in moderate yield (entry 6). The formation ¥5b may be because of the steric hindrance of the phenyl
group. Similar cycloadducts were obtained from the reactions of 4-methoxyphenyl- or 4-fluorophenyl-
substituted -silylnitrosocarbamate$3cor 13d (entries 7 and 8).

The reaction ofl3a with ethyl propiolate was also examined. In this case, the initially forided
unsubstituted pyrazole was regioselectively one product, the 3-substituted pyrazole, which reacted with
an excess of ethyl propiolate to give a mixtureléfand17in good yield (Eq. (1)).

O,Et 0,Et
/o u
13a +  =—CO,Et N + X, N
toluene N N \||\ 1
(4eq.) 80°C, 48 h S CO,Et 1)
CO,Et
16 (27% from 9) 17 (28% from 9)

In conclusion, we report the development of a novel synthesis of pyrazole derivatives using polymer-
supported -silylnitrosoamide derivatives. Intramolecular 1,4-silatropic shift of thsilylnitrosoamide
gave the polymer-supported azomethine imine which underwent 1,3-dipolar cycloaddition with the
dipolarophile. Modification of the linker led to higher yields of products. Itis noteworthy that the products
can be easily separated from the polymer without any cleavage operation. We are currently applying this
method to the synthesis of diverse pyrazole derivatives from several resins and dipolarophiles.
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